Online Cursive Handwriting Mongolia Words Recognition with Recurrent Neural Networks
نویسندگان
چکیده
This paper primarily discussed Online Handwriting Recognition methods for Mongolia words which being often used among the Mongolia people in the North China. Because of the characteristic of the whole body of the Mongolia words, namely connectivity between the characters, thereby the segmentation of Mongolia words is very difficult. We introduced a recurrent neural network to online handwriting Mongolia words recognition. The system consists of an advanced recurrent neural network with an output layer designed for sequence labelings, partially combined with a probabilistic language model. Experimental results show that unconstrained Mongolia words achieve recognition rates about 80%, compared with about 70% using a previous developed HMM-based recognition system.
منابع مشابه
Recognition-Based Segmentation of On-Line Cursive Handwriting
This paper introduces a new recognition-based segmentation approach to recognizing on-line cursive handwriting from a database of 10,000 English words. The original input stream of z, y pen coordinates is encoded as a sequence of uniform stroke descriptions that are processed by six feed-forward neural-networks, each designed to recognize letters of different sizes. Words are then recognized by...
متن کاملA connectionist recognizer for on-line cursive handwriting recognition
In this paper we show how the Multi-State Time Delay Neural Network (MS-TDNN), which is already used successfully in continuous speech recognition tasks, can be applied both to online single character and cursive (continuous) handwriting recognition. The MS-TDNN integrates the high accuracy single character recognition capabilities of a TDNN with a non-linear time alignment procedure (dynamic t...
متن کاملRecurrent Neural Network Method in Arabic Words Recognition System
The recognition of unconstrained handwriting continues to be a difficult task for computers despite active research for several decades. This is because handwritten text offers great challenges such as character and word segmentation, character recognition, variation between handwriting styles, different character size and no font constraints as well as the background clarity. In this paper pri...
متن کاملOffline Arabic Handwriting Recognition with Multidimensional Recurrent Neural Networks
Offline handwriting recognition is usually performed by first extracting a sequence of features from the image, then using either a hidden Markov model (HMM) [9] or an HMM / neural network hybrid [10] to transcribe the features. However a system trained directly on pixel data has several potential advantages. One is that defining input features suitable for an HMM requires considerable time and...
متن کاملGenerating Sequences With Recurrent Neural Networks
This paper shows how Long Short-term Memory recurrent neural networks can be used to generate complex sequences with long-range structure, simply by predicting one data point at a time. The approach is demonstrated for text (where the data are discrete) and online handwriting (where the data are real-valued). It is then extended to handwriting synthesis by allowing the network to condition its ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011